<--- Back to Details
First PageDocument Content
Exponentials / Runge–Kutta methods / Differential equations / Stiff equation / Numerical methods for ordinary differential equations / Schrödinger equation / Partial differential equation / Matrix exponential / Linear multistep method / Calculus / Mathematical analysis / Mathematics
Date: 2005-08-30 11:14:18
Exponentials
Runge–Kutta methods
Differential equations
Stiff equation
Numerical methods for ordinary differential equations
Schrödinger equation
Partial differential equation
Matrix exponential
Linear multistep method
Calculus
Mathematical analysis
Mathematics

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Solving the nonlinear Schödinger equation using exponential integrators by

Add to Reading List

Source URL: www.pvv.ntnu.no

Download Document from Source Website

File Size: 498,96 KB

Share Document on Facebook

Similar Documents

MathQuest: Differential Equations Introduction to Partial Differential Equations 1. Which of the following functions satisfies the equation x ∂f + y ∂f = f? ∂x

MathQuest: Differential Equations Introduction to Partial Differential Equations 1. Which of the following functions satisfies the equation x ∂f + y ∂f = f? ∂x

DocID: 1vb7j - View Document

Reinforcement Learning with Function-Valued Action Spaces for Partial Differential Equation Control Yangchen Pan 1 2 Amir-massoud Farahmand 3 2 Martha White 1 Saleh Nabi 2 Piyush Grover 2 Daniel Nikovski 2

Reinforcement Learning with Function-Valued Action Spaces for Partial Differential Equation Control Yangchen Pan 1 2 Amir-massoud Farahmand 3 2 Martha White 1 Saleh Nabi 2 Piyush Grover 2 Daniel Nikovski 2

DocID: 1uYik - View Document

Deep Reinforcement Learning for Partial Differential Equation Control Amir-massoud Farahmand, Saleh Nabi, Daniel N. Nikovski Abstract— This paper develops a data-driven method for control of partial differential equati

Deep Reinforcement Learning for Partial Differential Equation Control Amir-massoud Farahmand, Saleh Nabi, Daniel N. Nikovski Abstract— This paper develops a data-driven method for control of partial differential equati

DocID: 1uLR0 - View Document

MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Deep Reinforcement Learning for Partial Differential Equation Control Farahmand, A.-M.; Nabi, S.; Nikovski, D.N.

MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Deep Reinforcement Learning for Partial Differential Equation Control Farahmand, A.-M.; Nabi, S.; Nikovski, D.N.

DocID: 1untp - View Document

Reinforcement Learning with Function-Valued Action Spaces for Partial Differential Equation Control Yangchen Pan 1 2 Amir-massoud Farahmand 3 2 Martha White 1 Saleh Nabi 2 Piyush Grover 2 Daniel Nikovski 2

Reinforcement Learning with Function-Valued Action Spaces for Partial Differential Equation Control Yangchen Pan 1 2 Amir-massoud Farahmand 3 2 Martha White 1 Saleh Nabi 2 Piyush Grover 2 Daniel Nikovski 2

DocID: 1ujg3 - View Document