Back to Results
First PageMeta Content
Networks / Mathematics / Bayesian statistics / Statistical models / Probability theory / Factor graph / Belief propagation / Bayesian network / Gene regulatory network / Graphical models / Graph theory / Statistics


Message Passing Inference with Chemical Reaction Networks Nils Napp and Ryan Prescott Adams School of Engineering and Applied Sciences Harvard University Cambridge, MA 02138
Add to Reading List

Document Date: 2013-11-09 11:09:30


Open Document

File Size: 137,69 KB

Share Result on Facebook

City

DNA / /

Company

Neural Information Processing Systems / MIT Press / Bayesian Networks / /

Currency

pence / /

/

Facility

Wyss Institute / Massachusetts Institute of Technology / /

IndustryTerm

generalized belief propagation algorithms / deterministic chemical reaction networks / chemical systems / free-energy approximations / free energy / equilibrium solutions / sumproduct algorithm / sum-product message passing algorithm / interest systems / chemical representation / chemical reaction networks / reaction networks / equilibrium solution / linear i/o systems / sum-product algorithm / compiled reaction network / e.g. max-product / information processing tasks / design reaction networks / chemical species / graph algorithms / chemical signal / chemical reaction models / chemical species concentrations / few sections present reaction networks / component-wise product / particular algorithm / energy / chemical reaction network / chemical design / chemical reactions / damped asynchronous sum-product / reaction network / simulated reaction network / set distinct chemical species / inference algorithms / arbitrary reaction networks / gene regulatory networks / Chemical implementation / microscopic systems / stochastic chemical kinetics model / nanoscale devices / strand displacement systems / example networks / sum-product inference algorithm / chemical kinetics / computing / biological reaction network / approximate solutions / linear systems / physical systems / chemical sensing / synthetic oscillatory network / probabilistic inference tools / /

Organization

Harvard University / MIT / Wyss Institute for Biologically Inspired Engineering / Massachusetts Institute of Technology / U.S. Securities and Exchange Commission / National Academy of Sciences / Ryan Prescott Adams School of Engineering and Applied Sciences Harvard University Cambridge / /

Person

Jeff Hasty / John J. Hopfield / David Yu Zhang / Christopher M. Bishop / Erik Winfree Jongmin Kim / Ron Weiss / Jonathan S. Yedidia / Erik Winfree / Stanislas Leibler / Y. Weiss / Ho-Lin Chen / Andrew Turberfield / Tal Danino / Cynthia H. Collins / Octavio Mondragon-Palomino / Georg Seelig / Yoram Gerchman / Chengde Mao / Subhayu Basu / Radhika Nagpal / John H. Reif / David Doty / Lulu Qian / Michael B. Elowitz / Thomas H. LaBean / David Soloveichik / Nadrian C. Seeman / Benjamin Vigoda / Lev Tsimring / Frances H. Arnold / Jehoshua Bruck / Nick Papadakis / W.T. Freeman / Nils Napp / Ryan Prescott / /

Position

Prime Minister / /

ProvinceOrState

Massachusetts / /

PublishedMedium

Machine Learning / Proceedings of the National Academy of Sciences / Lecture Notes in Computer Science / /

Technology

inference algorithms / sum-product inference algorithm / sum-product algorithm / sum-product message passing algorithm / Machine Learning / graph algorithms / drug delivery / Neural network / simulation / this particular algorithm / generalized belief propagation algorithms / sumproduct algorithm / /

SocialTag