<--- Back to Details
First PageDocument Content
Ethology / Mind / Educational psychology / Computational neuroscience / Intelligent agent / Cognitive architecture / Strong AI / Concept learning / Intelligence / Artificial intelligence / Science / Cognitive science
Date: 2013-01-04 12:47:50
Ethology
Mind
Educational psychology
Computational neuroscience
Intelligent agent
Cognitive architecture
Strong AI
Concept learning
Intelligence
Artificial intelligence
Science
Cognitive science

A Gauntlet for Evaluating Cognitive Architectures Marc Pickett I and Don Miner and Tim Oates Cognition, Robotics, and Learning Department of Computer Science and Electrical Engineering University of Maryland, Baltimore C

Add to Reading List

Source URL: www.marcpickett.com

Download Document from Source Website

File Size: 134,71 KB

Share Document on Facebook

Similar Documents

Journal of Computational Neuroscience 18, 105–121, 2005 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.  A Cellular Mechanism for Graded Persistent Activity in a Model Neuron and Its Im

Journal of Computational Neuroscience 18, 105–121, 2005 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.  A Cellular Mechanism for Graded Persistent Activity in a Model Neuron and Its Im

DocID: 1vcJi - View Document

munich  Bernstein Center for Computational Neuroscience Munich

munich Bernstein Center for Computational Neuroscience Munich

DocID: 1vcv8 - View Document

Blending computational and experimental neuroscience

Blending computational and experimental neuroscience

DocID: 1v9kZ - View Document

Florentin Wörgötter Bernstein Center for Computational Neuroscience Göttingen Florentin Wörgötter studied biology and mathematics at the University of Düsseldorf, Germany. He received a Ph.D. degree, studying

Florentin Wörgötter Bernstein Center for Computational Neuroscience Göttingen Florentin Wörgötter studied biology and mathematics at the University of Düsseldorf, Germany. He received a Ph.D. degree, studying

DocID: 1v914 - View Document

Nonlinear synaptic interaction as a computational resource in the Neural Engineering Framework Andreas Stöckel, Aaron R. Voelker, Chris Eliasmith Centre for Theoretical Neuroscience, University of Waterloo {astoecke, ar

Nonlinear synaptic interaction as a computational resource in the Neural Engineering Framework Andreas Stöckel, Aaron R. Voelker, Chris Eliasmith Centre for Theoretical Neuroscience, University of Waterloo {astoecke, ar

DocID: 1uuia - View Document