<--- Back to Details
First PageDocument Content
Surfaces / Non-Euclidean geometry / Homogeneous spaces / Euclidean geometry / Parallel postulate / Spherical geometry / Poincaré disk model / Beltrami–Klein model / Axiom / Geometry / Elementary geometry / Hyperbolic geometry
Date: 2006-03-21 03:11:54
Surfaces
Non-Euclidean geometry
Homogeneous spaces
Euclidean geometry
Parallel postulate
Spherical geometry
Poincaré disk model
Beltrami–Klein model
Axiom
Geometry
Elementary geometry
Hyperbolic geometry

Add to Reading List

Source URL: dspace.library.cornell.edu

Download Document from Source Website

File Size: 5,53 MB

Share Document on Facebook

Similar Documents

3-manifold / The Geometry Center / Beltrami–Klein model / Icosahedron / Visualization / Hyperbolic space / Tree / Hyperbolic manifold / Hyperbolic tree / Geometry / Hyperbolic geometry / Topology

Visualizing the Structure of the World Wide Web in 3D Hyperbolic Space Tamara Munzner ∗ The Geometry Center, University of Minnesota † Paul Burchard ‡ Department of Mathematics, University of Utah §

DocID: 13wR8 - View Document

Hyperbolic tree / Beltrami–Klein model / Hyperbolic / Non-Euclidean geometry / Unit disk / Radial tree / SpicyNodes / Geometry / Hyperbolic geometry / Graph drawing

A Focus+Context Technique Based on Hyperbolic Geometry for Visualizing Large Hierarchies. John Lamping, Ramana Rao, and Peter Pirolli Xerox Palo Alto Research Center

DocID: WYzp - View Document

Axiom / Poincaré disk model / Mathematics / Model theory / Hyperbolic space / Geometry / Hyperbolic geometry / Beltrami–Klein model

Math_CS_Newsletter_2011-12

DocID: N3LH - View Document

Differential geometry / Surfaces / Differential geometers / Beltrami–Klein model / Non-Euclidean geometry / Differential geometry of surfaces / Hyperbolic space / Poincaré metric / Projective geometry / Geometry / Hyperbolic geometry / Homogeneous spaces

On Hilbert’s fourth problem arXiv:1312.3172v1 [math.HO] 11 Dec 2013

DocID: 4ooc - View Document

Parallel / Poincaré disk model / Euclidean geometry / Space / Tessellation / Ideal triangle / Nikolai Lobachevsky / Non-Euclidean geometry / Beltrami–Klein model / Geometry / Hyperbolic geometry / Hyperbolic space

Exploring Hyperbolic Space adapted from The Institute for Figuring: http://theiff.org/oexhibits/ In 1997 Cornell University mathematician Daina Taimina finally worked out how to make a

DocID: 2KsL - View Document