<--- Back to Details
First PageDocument Content
Mathematics / Convex optimization / Linear programming / Penalty method / Karush–Kuhn–Tucker conditions / Constraint optimization / Optimization problem / Interior point method / Multidisciplinary design optimization / Mathematical optimization / Mathematical analysis / Operations research
Date: 2012-12-13 19:53:35
Mathematics
Convex optimization
Linear programming
Penalty method
Karush–Kuhn–Tucker conditions
Constraint optimization
Optimization problem
Interior point method
Multidisciplinary design optimization
Mathematical optimization
Mathematical analysis
Operations research

Add to Reading List

Source URL: www.unisa.edu.au

Download Document from Source Website

File Size: 722,56 KB

Share Document on Facebook

Similar Documents

Scenario realizability with constraint optimization Rouwaida Abdallah1 , Arnaud Gotlieb2 , Lo¨ıc H´elou¨et3 ,Claude Jard4 1 ENS Cachan (antenne de Bretagne), 2 SIMULA, Norway, 3 INRIA Rennes,

DocID: 1vsbB - View Document

Answer Sets: From Constraint Programming Towards Qualitative Optimization Gerhard Brewka

DocID: 1vleR - View Document

Scenario realizability with constraint optimization? Rouwaida Abdallah1 , Arnaud Gotlieb2 , Lo¨ıc H´elou¨et3 ,Claude Jard4 1 ENS Cachan (antenne de Bretagne), 2 SIMULA, Norway, 3 INRIA Rennes,

DocID: 1uCIY - View Document

Scenario realizability with constraint optimization Rouwaida Abdallah1 , Arnaud Gotlieb2 , Lo¨ıc H´elou¨et3 ,Claude Jard4 1 ENS Cachan (antenne de Bretagne), 2 SIMULA, Norway, 3 INRIA Rennes,

DocID: 1us7g - View Document

Constraint Programming for LNG Ship Scheduling and Inventory Management V. Goela , M. Sluskyb , W.-J. van Hoevec , K. C. Furmand , Y. Shaoa a ExxonMobil Upstream Research Company

DocID: 1t5fI - View Document