<--- Back to Details
First PageDocument Content
Mathematics / Polynomials / Field theory / Perron number / Salem number / Pisot–Vijayaraghavan number / Mahler measure / Algebraic integer / Coxeter graph / Abstract algebra / Algebraic numbers / Algebra
Date: 2009-04-08 08:28:17
Mathematics
Polynomials
Field theory
Perron number
Salem number
Pisot–Vijayaraghavan number
Mahler measure
Algebraic integer
Coxeter graph
Abstract algebra
Algebraic numbers
Algebra

? W H A T

Add to Reading List

Source URL: www.ams.org

Download Document from Source Website

File Size: 59,41 KB

Share Document on Facebook

Similar Documents

Markov processes / Population / Probability theory / Ergodic theory / Markov models / Perron–Frobenius theorem / Markov chain / Leslie matrix / Ergodicity / Statistics / Mathematics / Matrices

BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 1, Number 2, March 1979 ERGODIC THEOREMS IN DEMOGRAPHY BY JOEL E. COHEN1

DocID: 1fKaU - View Document

Perron–Frobenius theorem / Spectral theory of ordinary differential equations / Differential form / Ordinal number / Number theory

On the Expansion and Diameter of Bluetooth-Like Topologies? Alberto Pettarin, Andrea Pietracaprina, and Geppino Pucci Department of Information Engineering, University of Padova, Padova, ITALY {pettarin,capri,geppo}@dei.

DocID: 18Q0u - View Document

Spectral radius / Adjacency matrix / Hypergraph / Spectral graph theory / Graph operations / Perron–Frobenius theorem / Clique-sum / Graph theory / Mathematics / Clique

New Bounds on the Clique Number of Graphs Based on Spectral Hypergraph Theory Samuel Rota Bul`o and Marcello Pelillo Dipartimento di Informatica, Universit` a Ca’ Foscari di Venezia, Venice, Italy {srotabul,pelillo}@ds

DocID: 12X0x - View Document

Number theory / Coin problem / Anatolii Alexeevitch Karatsuba / Finite fields / Frobenius algebra / Perron–Frobenius theorem / Mathematics / Abstract algebra / Algebra

c Pleiades Publishing, Ltd., 2012. ISSN, Proceedings of the Steklov Institute of Mathematics, 2012, Vol. 276, pp. 275–282.  c A.V. Ustinov, 2012, published in Trudy Matematicheskogo Instituta imeni V.A. Stek

DocID: 11QYA - View Document

Numerical linear algebra / Preconditioner / Linear complementarity problem / Perron–Frobenius theorem / Iterative method / Successive over-relaxation / Matrix / Conjugate gradient method / Meijer G-function / Algebra / Numerical analysis / Mathematics

Turkish Journal of Analysis and Number Theory, 2014, Vol. 2, No. 2, 47-52 Available online at http://pubs.sciepub.com/tjant/2/2/4 © Science and Education Publishing DOI:[removed]tjant[removed]Modified SSOR Modelling for

DocID: S6BM - View Document