<--- Back to Details
First PageDocument Content
Graph theory / Mathematics / Discrete mathematics / Network theory / Behavioral finance / Conformity / Information / Information cascade / Percolation theory / Percolation / Random graph / Line graph
Date: 2011-03-16 19:39:07
Graph theory
Mathematics
Discrete mathematics
Network theory
Behavioral finance
Conformity
Information
Information cascade
Percolation theory
Percolation
Random graph
Line graph

A Simple Model of Global Cascades on Random Networks Author(s): Duncan J. Watts Source: Proceedings of the National Academy of Sciences of the United States of America, Vol. 99, No. 9 (Apr. 30, 2002), ppPubli

Add to Reading List

Source URL: www.stat.berkeley.edu

Download Document from Source Website

File Size: 1,57 MB

Share Document on Facebook

Similar Documents

Understanding Resolution Proofs through Herbrand’s Theorem‹ Stefan Hetzl1 , Tomer Libal2 , Martin Riener3 , and Mikheil Rukhaia4 1  Institute of Discrete Mathematics and Geometry, Vienna University of Technology

Understanding Resolution Proofs through Herbrand’s Theorem‹ Stefan Hetzl1 , Tomer Libal2 , Martin Riener3 , and Mikheil Rukhaia4 1 Institute of Discrete Mathematics and Geometry, Vienna University of Technology

DocID: 1xTCQ - View Document

Using Alloy in a Language Lab Approach to Introductory Discrete Mathematics Charles Wallace Michigan Technological University In collaboration with Laura Brown, Adam Feltz

Using Alloy in a Language Lab Approach to Introductory Discrete Mathematics Charles Wallace Michigan Technological University In collaboration with Laura Brown, Adam Feltz

DocID: 1xTvc - View Document

Applicable Analysis and Discrete Mathematics available online at http://pefmath.etf.bg.ac.yu Appl. Anal. Discrete Math), 322–337. doi:AADM100425018H

Applicable Analysis and Discrete Mathematics available online at http://pefmath.etf.bg.ac.yu Appl. Anal. Discrete Math), 322–337. doi:AADM100425018H

DocID: 1vmuF - View Document

Discrete Mathematics and Theoretical Computer Science  DMTCS vol. (subm.), by the authors, 1–1 A lower bound for approximating the grundy number

Discrete Mathematics and Theoretical Computer Science DMTCS vol. (subm.), by the authors, 1–1 A lower bound for approximating the grundy number

DocID: 1vkug - View Document

Hausdorff Center for Mathematics, Summer School (May 9–13, 2016) Problems for “Discrete Convex Analysis” (by Kazuo Murota) Problem 1. Prove that a function f : Z2 → R defined by f (x1 , x2 ) = φ(x1 − x2 ) is

Hausdorff Center for Mathematics, Summer School (May 9–13, 2016) Problems for “Discrete Convex Analysis” (by Kazuo Murota) Problem 1. Prove that a function f : Z2 → R defined by f (x1 , x2 ) = φ(x1 − x2 ) is

DocID: 1vjVY - View Document