<--- Back to Details
First PageDocument Content
Invariant subspace / Linear map / Minimal polynomial / Nilpotent matrix / Basis / Column space / Projection / Theorems and definitions in linear algebra / Algebra / Mathematics / Linear algebra
Date: 2006-07-05 23:29:34
Invariant subspace
Linear map
Minimal polynomial
Nilpotent matrix
Basis
Column space
Projection
Theorems and definitions in linear algebra
Algebra
Mathematics
Linear algebra

Math 414 Fall 1997

Add to Reading List

Source URL: www.mth.msu.edu

Download Document from Source Website

File Size: 79,65 KB

Share Document on Facebook

Similar Documents

Algebra / Mathematics / Matrices / Abstract algebra / Ring theory / Matrix theory / Nilpotent / Idempotent / Idempotence / Invertible matrix / Matrix / Inverse element

TAKE-HOME CLASS QUIZ: DUE FRIDAY NOVEMBER 1: MATRIX MULTIPLICATION AND INVERSION: ABSTRACT BEHAVIOR PREDICTION MATH 196, SECTION 57 (VIPUL NAIK) Your name (print clearly in capital letters): PLEASE FEEL FREE TO DISCUSS A

DocID: 1qXVy - View Document

Algebra / Mathematics / Algebras / Linear algebra / Matrix theory / Ring theory / Semisimple algebra / Algebra over a field / Nilpotent / Commutative algebra / Associative algebra / Von Neumann algebra

Noncommutativity makes determinants hard? Markus Bl¨aser1 Saarland University Abstract. We consider the complexity of computing the determinant

DocID: 1qdVA - View Document

An involution on the nilpotent commutator of a nilpotent matrix Anthony Iarrobino Department of Mathematics, Northeastern University, Boston, MA 02115, USA.. Talk at

DocID: 1m0dO - View Document

Algebraic geometry / Numerical linear algebra / Algebraic combinatorics / Matrices / Hessenberg variety / Nilpotent / Triangular matrix / Schubert polynomial / Algebra / Abstract algebra / Mathematics

Poset Pinball, the Dimension Pair Algorithm, and Type A Regular Nilpotent Hessenberg Varieties

DocID: RITQ - View Document

Matrices / Matrix / Rank / Unimodular matrix / Nilpotent matrix / Algebra / Linear algebra / Mathematics

Microsoft PowerPoint - fields_recski

DocID: NEXk - View Document