<--- Back to Details
First PageDocument Content
Mathematics / Colleges of the University of Oxford / Academia / Partial differential equations / Endre Sli / Differential equation / Numerical analysis / Analysis of partial differential equations / Arieh Iserles / Gui-Qiang Chen
Date: 2012-01-30 10:22:35
Mathematics
Colleges of the University of Oxford
Academia
Partial differential equations
Endre Sli
Differential equation
Numerical analysis
Analysis of partial differential equations
Arieh Iserles
Gui-Qiang Chen

CURRICULUM VITAE Charles Elliott August 2011 Mathematics Institute University of Warwick Coventry CV4 7AL

Add to Reading List

Source URL: homepages.warwick.ac.uk

Download Document from Source Website

File Size: 123,23 KB

Share Document on Facebook

Similar Documents

Differential Equation Axiomatization The Impressive Power of Differential Ghosts André Platzer Yong Kiam Tan

Differential Equation Axiomatization The Impressive Power of Differential Ghosts André Platzer Yong Kiam Tan

DocID: 1xUKG - View Document

MathQuest: Differential Equations What is a Differential Equation? 1. Which of the following is not a differential equation? (a) y ′ = 3y (b) 2x2 y + y 2 = 6 =2

MathQuest: Differential Equations What is a Differential Equation? 1. Which of the following is not a differential equation? (a) y ′ = 3y (b) 2x2 y + y 2 = 6 =2

DocID: 1vbJA - View Document

MathQuest: Differential Equations Introduction to Partial Differential Equations 1. Which of the following functions satisfies the equation x ∂f + y ∂f = f? ∂x

MathQuest: Differential Equations Introduction to Partial Differential Equations 1. Which of the following functions satisfies the equation x ∂f + y ∂f = f? ∂x

DocID: 1vb7j - View Document

Equilibrium Solutions For the 1st Order Autonomous Differential Equation Consider the IVP dy  y ( y

Equilibrium Solutions For the 1st Order Autonomous Differential Equation Consider the IVP dy y ( y

DocID: 1v5d6 - View Document

Landing a probe on Mars Suppose we want to land a 200kg mass on the surface of Mars. We release it at a height of 10 km. 2 If we simply allow free fall the differential equation and corresponding IVP governing this is

Landing a probe on Mars Suppose we want to land a 200kg mass on the surface of Mars. We release it at a height of 10 km. 2 If we simply allow free fall the differential equation and corresponding IVP governing this is

DocID: 1v4OQ - View Document