<--- Back to Details
First PageDocument Content
Ranking SVM / Ranking function / Tf*idf / BM25 / Discounted cumulative gain / Support vector machine / Supervised learning / Search engine indexing / Document retrieval / Information science / Information retrieval / Learning to rank
Date: 2009-07-27 19:45:25
Ranking SVM
Ranking function
Tf*idf
BM25
Discounted cumulative gain
Support vector machine
Supervised learning
Search engine indexing
Document retrieval
Information science
Information retrieval
Learning to rank

Add to Reading List

Source URL: research.microsoft.com

Download Document from Source Website

File Size: 252,84 KB

Share Document on Facebook

Similar Documents

Quick and Reliable Document Alignment via TF/IDF-weighted Cosine Distance Christian Buck Philipp Koehn University of Edinburgh Center for Language and Speech Processing

DocID: 1tmqa - View Document

Tf*idf / Vector space model / Query expansion / Relevance feedback / Precision and recall / N-gram / Web search query / Relevance / Language model / Information science / Information retrieval / Science

Back to Our Roots for Retrieving Very Short Passages Nada Naji University of Neuchatel, Computer Science Dept. Rue Emile-Argand 11, 2000 Neuchatel Switzerland

DocID: 1gC3e - View Document

Learning to rank / Text Retrieval Conference / XML-Retrieval / Search engine indexing / Document retrieval / Tf*idf / Character encodings in HTML / Precision and recall / Google Search / Information science / Information retrieval / Science

Microsoft Word - _paged_overlay_100.doc

DocID: 1gzhS - View Document

Latent semantic indexing / Tf*idf / Vector space model / Feature recognition / Specific Area Message Encoding / Mind map / Information science / Information retrieval / Science

A Survey of Feature Location Techniques Julia Rubin and Marsha Chechik Abstract Feature location techniques aim at locating software artifacts that implement a specific program functionality, a.k.a. a feature. These tech

DocID: 1gwU0 - View Document

Natural language processing / Economic model / Tf*idf / Artificial intelligence / Model theory / Fuzzy retrieval / Information science / Information retrieval / Science

Splitting Models Using Information Retrieval and Model Crawling Techniques Daniel Str¨uber1 , Julia Rubin2,3 , Gabriele Taentzer1 , and Marsha Chechik3 1 Philipps-Universit¨at Marburg, Germany

DocID: 1gwdL - View Document