<--- Back to Details
First PageDocument Content
Science / Electrophysiology / Neurophysiology / Neural networks / Neural coding / Spike-triggered average / Action potential / Principal component analysis / Neural decoding / Computational neuroscience / Neuroscience / Biology
Date: 2008-03-22 13:41:59
Science
Electrophysiology
Neurophysiology
Neural networks
Neural coding
Spike-triggered average
Action potential
Principal component analysis
Neural decoding
Computational neuroscience
Neuroscience
Biology

Features and dimensions: Motion estimation in fly vision William Bialeka and Rob R. de Ruyter van Steveninckb Joseph Henry Laboratories of Physics, b Department of Molecular Biology, and the Lewis–Sigler Institute for

Add to Reading List

Source URL: www.princeton.edu

Download Document from Source Website

File Size: 509,27 KB

Share Document on Facebook

Similar Documents

Journal of Computational Neuroscience 18, 105–121, 2005 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.  A Cellular Mechanism for Graded Persistent Activity in a Model Neuron and Its Im

Journal of Computational Neuroscience 18, 105–121, 2005 c 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.  A Cellular Mechanism for Graded Persistent Activity in a Model Neuron and Its Im

DocID: 1vcJi - View Document

munich  Bernstein Center for Computational Neuroscience Munich

munich Bernstein Center for Computational Neuroscience Munich

DocID: 1vcv8 - View Document

Blending computational and experimental neuroscience

Blending computational and experimental neuroscience

DocID: 1v9kZ - View Document

Florentin Wörgötter Bernstein Center for Computational Neuroscience Göttingen Florentin Wörgötter studied biology and mathematics at the University of Düsseldorf, Germany. He received a Ph.D. degree, studying

Florentin Wörgötter Bernstein Center for Computational Neuroscience Göttingen Florentin Wörgötter studied biology and mathematics at the University of Düsseldorf, Germany. He received a Ph.D. degree, studying

DocID: 1v914 - View Document

Nonlinear synaptic interaction as a computational resource in the Neural Engineering Framework Andreas Stöckel, Aaron R. Voelker, Chris Eliasmith Centre for Theoretical Neuroscience, University of Waterloo {astoecke, ar

Nonlinear synaptic interaction as a computational resource in the Neural Engineering Framework Andreas Stöckel, Aaron R. Voelker, Chris Eliasmith Centre for Theoretical Neuroscience, University of Waterloo {astoecke, ar

DocID: 1uuia - View Document