<--- Back to Details
First PageDocument Content
Logic / Mathematical logic / Mathematics / Boolean algebra / Complexity classes / Metalogic / Model theory / True quantified Boolean formula / Satisfiability / FO / PSPACE-complete / Well-formed formula
Date: 2010-06-02 16:25:19
Logic
Mathematical logic
Mathematics
Boolean algebra
Complexity classes
Metalogic
Model theory
True quantified Boolean formula
Satisfiability
FO
PSPACE-complete
Well-formed formula

Introduction Background, Theory Validating Squolem’s Certificates in HOL4 Evaluation Conclusions

Add to Reading List

Source URL: user.it.uu.se

Download Document from Source Website

File Size: 1,04 MB

Share Document on Facebook

Similar Documents

Algebra Universalis, + 0.20/0 (~ 1995 BirkhS.user Verlag, Basel Adjoining units to residuated Boolean algebras

DocID: 1v8wA - View Document

American Computer Science League Flyer Solutions 1. Boolean Algebra ( A  B) ( AB  BC ) = A B ( AB  BC ) = AA B  A BB C  0  0  0

DocID: 1uZJ8 - View Document

Visualising the Boolean Algebra IB4 in 3D Hans Smessaert & Lorenz Demey KU Leuven, Belgium Rhombic Dodecahedron (RDH) LOGICAL GEOMETRY

DocID: 1up5i - View Document

BOO axioms BOO001-0.ax Ternary Boolean algebra (equality) axioms m(m(v, w, x), y, m(v, w, z)) = m(v, w, m(x, y, z)) cnf(associativity, axiom) m(y, x, x) = x cnf(ternary multiply1 , axiom)

DocID: 1u9q0 - View Document

Theoretical computer science / Mathematics / Computational complexity theory / Operations research / Logic in computer science / Mathematical optimization / NP-complete problems / Boolean algebra / Maximum satisfiability problem / Boolean satisfiability problem / Constraint satisfaction / Solver

On Solving Boolean Multilevel Optimization Problems∗ Josep Argelich INESC-ID Lisbon

DocID: 1rsZm - View Document