<--- Back to Details
First PageDocument Content
Euclidean geometry / Crystal structure / Cubic crystal system / Close-packing of equal spheres / Lattice / Crystallography / Chemistry / Geometry
Euclidean geometry
Crystal structure
Cubic crystal system
Close-packing of equal spheres
Lattice
Crystallography
Chemistry
Geometry

PHYSICS: A. W. HULL 470

Add to Reading List

Source URL: www.ncbi.nlm.nih.gov

Download Document from Source Website

File Size: 452,47 KB

Share Document on Facebook

Similar Documents

Chemistry / Crystallography / Packing problems / Geometry / Physics / Discrete geometry / Spheres / Particle detectors / Sphere packing / Close-packing of equal spheres / Classical nucleation theory / Microstate

PHYSICAL REVIEW E 85, Structure of finite sphere packings via exact enumeration: Implications for colloidal crystal nucleation Robert S. Hoy Department of Mechanical Engineering & Materials Science and Dep

DocID: 1qKrQ - View Document

Chemistry / Nature / Crystallography / Condensed matter physics / Materials science / Phase transitions / Polymer chemistry / Close-packing of equal spheres / Crystallization of polymers / Glass transition / Polymer / Crystal twinning

PHYSICAL REVIEW E 88, Simple model for chain packing and crystallization of soft colloidal polymers Robert S. Hoy* Department of Physics, University of South Florida, Tampa, Florida 33620, USA

DocID: 1qzdR - View Document

Spheres / Discrete geometry / Packing problems / Crystallography / Sphere packing / Differential topology / Close-packing of equal spheres / Kissing number problem / 3-sphere / Kepler conjecture / Sphere / Celestial spheres

A reprint from American Scientist the magazine of Sigma Xi, The Scientific Research Society

DocID: 1pAhS - View Document

Discrete geometry / Spheres / Euclidean geometry / Random close pack / Sphere packing / Condensed matter physics / Lubachevsky–Stillinger algorithm / Close-packing of equal spheres / Crystal structure / Crystallography / Geometry / Chemistry

VOLUME 84, NUMBER 10 PHYSICAL REVIEW LETTERS 6 MARCH 2000

DocID: 18ORj - View Document

Crystallography / Spheres / Sphere packing / Packing problem / Close-packing of equal spheres / Kepler conjecture / Sphere / Kissing number problem / N-sphere / Geometry / Discrete geometry / Mathematics

PHYSICAL REVIEW E 81, 041305 共2010兲 Densest local sphere-packing diversity: General concepts and application to two dimensions Adam B. Hopkins and Frank H. Stillinger Department of Chemistry, Princeton University, P

DocID: 18Ob0 - View Document