<--- Back to Details
First PageDocument Content
Matrix theory / Numerical linear algebra / Matrices / Multiplication / Matrix multiplication / Matrix / Gaussian elimination / Determinant / Smith normal form / Algebra / Mathematics / Linear algebra
Date: 2008-02-07 02:51:37
Matrix theory
Numerical linear algebra
Matrices
Multiplication
Matrix multiplication
Matrix
Gaussian elimination
Determinant
Smith normal form
Algebra
Mathematics
Linear algebra

(C[removed]Society for Industrial and Applied Mathematics SIAM J. COMPUT.

Add to Reading List

Source URL: www.williamstein.org

Download Document from Source Website

File Size: 1,03 MB

Share Document on Facebook

Similar Documents

Faster multiplication in Z2m[x] on Cortex-M4 to speed up NIST PQC candidates

Faster multiplication in Z2m[x] on Cortex-M4 to speed up NIST PQC candidates

DocID: 1xVVg - View Document

Faster multiplication in Z2m[x] on Cortex-M4 to speed up NIST PQC candidates

Faster multiplication in Z2m[x] on Cortex-M4 to speed up NIST PQC candidates

DocID: 1xVgU - View Document

COSC 544 Probabilistic Proof SystemsAn Optimal Interactive Proof for Matrix Multiplication Lecturer: Justin Thaler

COSC 544 Probabilistic Proof SystemsAn Optimal Interactive Proof for Matrix Multiplication Lecturer: Justin Thaler

DocID: 1xUI5 - View Document

Optimization Techniques for Small Matrix Multiplication ´ Charles-Eric Drevet ´

Optimization Techniques for Small Matrix Multiplication ´ Charles-Eric Drevet ´

DocID: 1vrNt - View Document

Contemporary Mathematics  The geometry of efficient arithmetic on elliptic curves David Kohel Abstract. The arithmetic of elliptic curves, namely polynomial addition and scalar multiplication, can be described in terms o

Contemporary Mathematics The geometry of efficient arithmetic on elliptic curves David Kohel Abstract. The arithmetic of elliptic curves, namely polynomial addition and scalar multiplication, can be described in terms o

DocID: 1vqo7 - View Document