<--- Back to Details
First PageDocument Content
Unified Modeling Language / Model-driven architecture / Object Management Group / Modeling language / KeY / Hybrid system / Model checking / Metamodeling / Systems Modeling Language / Object Process Methodology / Formal verification / Hybrid automaton
Date: 2014-10-10 12:15:04
Unified Modeling Language
Model-driven architecture
Object Management Group
Modeling language
KeY
Hybrid system
Model checking
Metamodeling
Systems Modeling Language
Object Process Methodology
Formal verification
Hybrid automaton

Math.Comput.Sci:71–97 DOIs11786y Mathematics in Computer Science Collaborative Verification-Driven Engineering

Add to Reading List

Source URL: www.utc.ices.cmu.edu

Download Document from Source Website

File Size: 2,39 MB

Share Document on Facebook

Similar Documents

Model-Based API Testing for SMT Solvers∗ Aina Niemetz, Mathias Preiner, and Armin Biere Institute for Formal Models and Verification Johannes Kepler University, Linz, Austria  Abstract

Model-Based API Testing for SMT Solvers∗ Aina Niemetz, Mathias Preiner, and Armin Biere Institute for Formal Models and Verification Johannes Kepler University, Linz, Austria Abstract

DocID: 1xVj1 - View Document

Randomized Differential Testing as a Prelude to Formal Verification Alex Groce, Gerard Holzmann, and Rajeev Joshi Laboratory for Reliable Software ∗ Jet Propulsion Laboratory California Institute of Technology Pasadena

Randomized Differential Testing as a Prelude to Formal Verification Alex Groce, Gerard Holzmann, and Rajeev Joshi Laboratory for Reliable Software ∗ Jet Propulsion Laboratory California Institute of Technology Pasadena

DocID: 1xVf0 - View Document

Formal Methods in System Design manuscript No.  (will be inserted by the editor) Automatic Verification of Competitive Stochastic Systems Taolue Chen · Vojtˇ

Formal Methods in System Design manuscript No. (will be inserted by the editor) Automatic Verification of Competitive Stochastic Systems Taolue Chen · Vojtˇ

DocID: 1xUrV - View Document

Verification of Annotated Models from Executions  ABSTRACT Simulations can help enhance confidence in system designs but they provide almost no formal guarantees. In this paper, we present a simulation-based verification

Verification of Annotated Models from Executions ABSTRACT Simulations can help enhance confidence in system designs but they provide almost no formal guarantees. In this paper, we present a simulation-based verification

DocID: 1xTNp - View Document

Verifiable Autonomy Michael Fisher University of Liverpool, 11th September 2015  Formal Verification

Verifiable Autonomy Michael Fisher University of Liverpool, 11th September 2015 Formal Verification

DocID: 1xTyY - View Document