<--- Back to Details
First PageDocument Content
Number theory / Diophantine geometry / Elliptic curves / Analytic number theory / Abelian varieties / Tate–Shafarevich group / Birch and Swinnerton-Dyer conjecture / Heegner point / Peter Swinnerton-Dyer / Mathematics / Abstract algebra / Algebraic geometry
Date: 2013-04-04 22:09:51
Number theory
Diophantine geometry
Elliptic curves
Analytic number theory
Abelian varieties
Tate–Shafarevich group
Birch and Swinnerton-Dyer conjecture
Heegner point
Peter Swinnerton-Dyer
Mathematics
Abstract algebra
Algebraic geometry

William A. Stein[removed]Curriculum Vitae – April 2013 ·

Add to Reading List

Source URL: www.williamstein.org

Download Document from Source Website

File Size: 163,03 KB

Share Document on Facebook

Similar Documents

Dynamical systems / Mathematics / Mathematical analysis / Geometry / Jacob Palis / Homoclinic orbit / Structural stability / Stable manifold / Diffeomorphism / Cantor set / Heteroclinic orbit / Hyperbolic set

Dynamical Systems, Fractal Geometry and Diophantine Approximations Carlos Gustavo Tamm de Araujo Moreira IMPA March 9, 2018

DocID: 1xVR0 - View Document

Arithmetic and Diophantine Geometry 14Gxx [1] Matthew H. Baker, Enrique Gonz´alez-Jim´enez, Josep Gonz´alez, and Bjorn Poonen, Finiteness results for modular curves of genus at least 2, Amer. J. Math), no.

DocID: 1u3w4 - View Document

THE THUE-SIEGEL METHOD IN DIOPHANTINE GEOMETRY Paul Vojta University of California, Berkeley 28 June 2014 Abstract. This mini-course described the Thue-Siegel method, as used in the proof of

DocID: 1tgzR - View Document

On transcendental number theory, classical analytic functions and Diophantine geometry B. Zilber University of Oxford

DocID: 1sO0W - View Document

The set of non-n-th powers in a number field is diophantine Joint work with Jan Van Geel (Gent) Jean-Louis Colliot-Th´el`ene (CNRS et Universit´e Paris-Sud, Orsay) Second ERC Research period on Diophantine Geometry Cet

DocID: 1sLMo - View Document