<--- Back to Details
First PageDocument Content
Cryptography / Computational complexity theory / Complexity classes / Randomized algorithms / Zero-knowledge proof / Analysis of algorithms / NP / Commitment scheme / Probabilistically checkable proof / IP / Logarithm / XTR
Date: 2016-03-08 12:29:47
Cryptography
Computational complexity theory
Complexity classes
Randomized algorithms
Zero-knowledge proof
Analysis of algorithms
NP
Commitment scheme
Probabilistically checkable proof
IP
Logarithm
XTR

Efficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting†∗ Jonathan Bootle1 , Andrea Cerulli1 , Pyrros Chaidos1∗∗ , Jens Groth1 , and Christophe Petit2 1

Add to Reading List

Source URL: eprint.iacr.org

Download Document from Source Website

File Size: 580,31 KB

Share Document on Facebook

Similar Documents

Lebesgue density and Π01 Classes Mushfeq Khan University of Hawai‘i at M¯anoa Algorithmic Randomness and Complexity Shonan Village Center September 12th, 2014

Lebesgue density and Π01 Classes Mushfeq Khan University of Hawai‘i at M¯anoa Algorithmic Randomness and Complexity Shonan Village Center September 12th, 2014

DocID: 1ubuP - View Document

Rademacher Complexity Margin Bounds for Learning with a Large Number of Classes Vitaly Kuznetsov Courant Institute of Mathematical Sciences, 251 Mercer street, New York, NY, 10012 Mehryar Mohri

Rademacher Complexity Margin Bounds for Learning with a Large Number of Classes Vitaly Kuznetsov Courant Institute of Mathematical Sciences, 251 Mercer street, New York, NY, 10012 Mehryar Mohri

DocID: 1t1hx - View Document

Principles of metabolism: coping with complexity Six classes of enzymes

Principles of metabolism: coping with complexity Six classes of enzymes

DocID: 1sh47 - View Document

Logic, Computation and Constraint Satisfaction Barnaby D. Martin University of Leicester

Logic, Computation and Constraint Satisfaction Barnaby D. Martin University of Leicester

DocID: 1ruap - View Document

The complexity of positive first-order logic without equality II: The four-element case Barnaby Martin1? and Jos Martin2 1  School of Engineering and Computing Sciences, Durham University,

The complexity of positive first-order logic without equality II: The four-element case Barnaby Martin1? and Jos Martin2 1 School of Engineering and Computing Sciences, Durham University,

DocID: 1rtIQ - View Document