<--- Back to Details
First PageDocument Content
Numerical software / Computing / Numerical analysis / Numerical linear algebra / Computer programming / Basic Linear Algebra Subprograms / LAPACK / PBLAS / Graphics processing unit / Linear algebra / Comparison of linear algebra libraries / Matrix
Date: 2018-07-02 10:42:06
Numerical software
Computing
Numerical analysis
Numerical linear algebra
Computer programming
Basic Linear Algebra Subprograms
LAPACK
PBLAS
Graphics processing unit
Linear algebra
Comparison of linear algebra libraries
Matrix

INITIAL INTEGRATION AND EVALUATION OF SLATE PARALLEL BLAS IN LATTE Marc Cawkwell, Danny Perez, Arthur Voter Asim YarKhan, Gerald Ragghianti, Jack Dongarra, Introduction

Add to Reading List

Source URL: www.icl.utk.edu

Download Document from Source Website

File Size: 366,60 KB

Share Document on Facebook

Similar Documents

2  C++ API for BLAS and LAPACK Mark Gates Piotr Luszczek Ahmad Abdelfattah

2 C++ API for BLAS and LAPACK Mark Gates Piotr Luszczek Ahmad Abdelfattah

DocID: 1xVIh - View Document

How LAPACK library enables Microsoft Visual Studio support with CMake and LAPACKE Julie Langou1, Bill Hoffman2, Brad King2 1.  University of Tennessee Knoxville, USA

How LAPACK library enables Microsoft Visual Studio support with CMake and LAPACKE Julie Langou1, Bill Hoffman2, Brad King2 1. University of Tennessee Knoxville, USA

DocID: 1udh7 - View Document

Microsoft PowerPoint - lacsi-sans-1006

Microsoft PowerPoint - lacsi-sans-1006

DocID: 1ru2M - View Document

MAGMA (Matrix Algebra on GPU and Multicore Architectures) is a collection of next generation linear algebra libraries for heterogeneous architectures. MAGMA is designed and implemented by the team that developed LAPACK a

MAGMA (Matrix Algebra on GPU and Multicore Architectures) is a collection of next generation linear algebra libraries for heterogeneous architectures. MAGMA is designed and implemented by the team that developed LAPACK a

DocID: 1r9v4 - View Document

Dynamically scheduled Cholesky factorization on multicore architectures with GPU accelerators. Emmanuel Agullo, C´edric Augonnet, Jack Dongarra, Hatem Ltaief, Raymond Namyst, Jean Roman, Samuel Thibault, Stanimire Tomov

Dynamically scheduled Cholesky factorization on multicore architectures with GPU accelerators. Emmanuel Agullo, C´edric Augonnet, Jack Dongarra, Hatem Ltaief, Raymond Namyst, Jean Roman, Samuel Thibault, Stanimire Tomov

DocID: 1qb5g - View Document