<--- Back to Details
First PageDocument Content
Formal methods / University of Toronto / Theoretical computer science / Eric Hehner / Program derivation / Predicative programming / Refinement / Formal verification / Department of Computer Science
Date: 2014-07-22 17:29:12
Formal methods
University of Toronto
Theoretical computer science
Eric Hehner
Program derivation
Predicative programming
Refinement
Formal verification
Department of Computer Science

Lai, Albert Yu Cheong Curriculum Vitae (address and phone omitted in public) email: trebla [at] vex [dot] net Born in 1969 Citizenship: Canadian

Add to Reading List

Source URL: www.vex.net

Download Document from Source Website

File Size: 48,28 KB

Share Document on Facebook

Similar Documents

Model-Based API Testing for SMT Solvers∗ Aina Niemetz, Mathias Preiner, and Armin Biere Institute for Formal Models and Verification Johannes Kepler University, Linz, Austria  Abstract

Model-Based API Testing for SMT Solvers∗ Aina Niemetz, Mathias Preiner, and Armin Biere Institute for Formal Models and Verification Johannes Kepler University, Linz, Austria Abstract

DocID: 1xVj1 - View Document

Randomized Differential Testing as a Prelude to Formal Verification Alex Groce, Gerard Holzmann, and Rajeev Joshi Laboratory for Reliable Software ∗ Jet Propulsion Laboratory California Institute of Technology Pasadena

Randomized Differential Testing as a Prelude to Formal Verification Alex Groce, Gerard Holzmann, and Rajeev Joshi Laboratory for Reliable Software ∗ Jet Propulsion Laboratory California Institute of Technology Pasadena

DocID: 1xVf0 - View Document

Formal Methods in System Design manuscript No.  (will be inserted by the editor) Automatic Verification of Competitive Stochastic Systems Taolue Chen · Vojtˇ

Formal Methods in System Design manuscript No. (will be inserted by the editor) Automatic Verification of Competitive Stochastic Systems Taolue Chen · Vojtˇ

DocID: 1xUrV - View Document

Verification of Annotated Models from Executions  ABSTRACT Simulations can help enhance confidence in system designs but they provide almost no formal guarantees. In this paper, we present a simulation-based verification

Verification of Annotated Models from Executions ABSTRACT Simulations can help enhance confidence in system designs but they provide almost no formal guarantees. In this paper, we present a simulation-based verification

DocID: 1xTNp - View Document

Verifiable Autonomy Michael Fisher University of Liverpool, 11th September 2015  Formal Verification

Verifiable Autonomy Michael Fisher University of Liverpool, 11th September 2015 Formal Verification

DocID: 1xTyY - View Document