<--- Back to Details
First PageDocument Content
Logic / Abstraction / Philosophy / Automated theorem proving / Reasoning / Formal methods / Predicate logic / Datalog / First-order logic / Axiom / Satisfiability modulo theories / Mereology
Date: 2007-08-16 08:58:53
Logic
Abstraction
Philosophy
Automated theorem proving
Reasoning
Formal methods
Predicate logic
Datalog
First-order logic
Axiom
Satisfiability modulo theories
Mereology

Microsoft Word - BlankPage

Add to Reading List

Source URL: www.cs.miami.edu

Download Document from Source Website

File Size: 2,74 MB

Share Document on Facebook

Similar Documents

MSC axioms MSC problems MSC001-1.p A Blind Hand Problem at(a, there, b) ⇒ ¬ at(a, here, b) cnf(clause1 , axiom) cnf(clause2 , axiom)

DocID: 1vjZG - View Document

PLA axioms PLA001-0.ax Blocks world axioms (holds(x, state) and holds(y, state)) ⇒ holds(and(x, y), state) cnf(and definition, axiom) (holds(empty, state) and holds(clear(x), state) and differ(x, table)) ⇒ holds(hol

DocID: 1vjaE - View Document

COM axioms COM001+1.ax Common axioms for progress/preservation proof ∀ve: valphaEquivalent(ve, ve) fof(’alpha-equiv-refl’, axiom) ∀ve2 , ve1 : (valphaEquivalent(ve1 , ve2 ) ⇒ valphaEquivalent(ve2 , ve1 ))

DocID: 1vaFb - View Document

PUZ axioms PUZ001-0.ax Mars and Venus axioms from mars(x) or from venus(x) cnf(from mars or venus, axiom) cnf(not from mars and venus, axiom) from mars(x) ⇒ ¬ from venus(x)

DocID: 1v5ap - View Document

MED axioms MED001+0.ax Physiology Diabetes Mellitus type 2 Physiological mechanisms of diabetes mellitus type 2 ∀x: ¬ gt(x, x) fof(irreflexivity gt, axiom)

DocID: 1v2ha - View Document