<--- Back to Details
First PageDocument Content
Physics / Triangulation / Delaunay triangulation / Introductory physics / Convex hull / Voronoi diagram / Collision detection / Leonidas J. Guibas / Collision / Geometry / Computational geometry / Mathematics
Date: 2000-11-15 11:31:37
Physics
Triangulation
Delaunay triangulation
Introductory physics
Convex hull
Voronoi diagram
Collision detection
Leonidas J. Guibas
Collision
Geometry
Computational geometry
Mathematics

Add to Reading List

Source URL: graphics.stanford.edu

Download Document from Source Website

File Size: 527,41 KB

Share Document on Facebook

Similar Documents

Triangulation Numbers Caspar and Klug found that only some arrangements of subunits can form quasisymmetrical capsids. To explain this, they developed the concept

DocID: 1vdSu - View Document

CONSTRUCTING REGULAR TRIANGULATION VIA LOCAL TRANSFORMATIONS: THEORETICAL AND PRACTICAL ADVANCES MINGCEN GAO

DocID: 1tLli - View Document

AN O(n2 log n) TIME ALGORITHM FOR THE MINMAX ANGLE TRIANGULATION HERBERT EDELSBRUNNERy , TIOW SENG TANy AND ROMAN WAUPOTITSCHy Abstract. We show that a triangulation of a set of n points in the plane that minimizes the m

DocID: 1tKLY - View Document

Edge Insertion for Optimal Triangulations1 M. Bern2 , H. Edelsbrunner3 , D. Eppstein4 , S. Mitchell5 and T. S. Tan3 Abstract The edge-insertion paradigm improves a triangulation of a nite point set in <2 iteratively by

DocID: 1tKcZ - View Document

A QUADRATIC TIME ALGORITHM FOR THE MINMAX LENGTH TRIANGULATION HERBERT EDELSBRUNNER AND TIOW SENG TANy Abstract. We show that a triangulation of a set of n points in the plane that minimizes the maximum edge length can b

DocID: 1tH3b - View Document