<--- Back to Details
First PageDocument Content
Control theory / Systems theory / Cybernetics / Optimal control / Stochastic control / Robot control / Markov models / LinearquadraticGaussian control / Kalman filter / Motion planning / State observer
Date: 2011-06-09 12:46:21
Control theory
Systems theory
Cybernetics
Optimal control
Stochastic control
Robot control
Markov models
LinearquadraticGaussian control
Kalman filter
Motion planning
State observer

C:/Users/Jur van den Berg/Documents/LQG-MP IJRR/jur-planningcontrol-IJRR-v8.dvi

Add to Reading List

Source URL: goldberg.berkeley.edu

Download Document from Source Website

File Size: 700,36 KB

Share Document on Facebook

Similar Documents

Monte Carlo Motion Planning for Robot Trajectory Optimization Under Uncertainty Lucas Janson† , Edward Schmerling† , and Marco Pavone Abstract This article presents a novel approach, named MCMP (Monte Carlo Motion Pl

DocID: 1vjBF - View Document

Auton Robot DOIs10514Reactive mission and motion planning with deadlock resolution avoiding dynamic obstacles Javier Alonso-Mora1,4 · Jonathan A. DeCastro2 · Vasumathi Raman3 ·

DocID: 1vhNQ - View Document

MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Automated Driving: Safe Motion Planning Using Positively Invariant Sets Berntorp, K.; Weiss, A.; Danielson, C.; Di Cairano, S.

DocID: 1v41z - View Document

Motion Planning for Optimal Information Gathering in Opportunistic Navigation Systems Zaher M. Kassas∗, and Todd E. Humphreys† The University of Texas at Austin, Austin, TX, 78712, USA Motion planning for optimal in

DocID: 1uTqR - View Document

Assignments for October 11 I Read Chapters 13–14 in LaValle, S. M., Planning Algorithms, Cambridge University Press, Cambridge, UK, 2006. The chapters discuss topics in motion planning for systems with

DocID: 1uR5q - View Document